(本小题满分12分)已知,,,函数 ,且函数的最小正周期为.(I)求函数的解析式;(Ⅱ)求函数在上的单调区间.
已知函数定义在上,对任意的,,且. (1)求,并证明:; (2)若单调,且.设向量,对任意,恒成立,求实数的取值范围.
设各项均为正数的数列的前项和为,满足,且恰为等比数列的前三项. (1)证明:数列为等差数列;(2)求数列的前项和.
设函数,且有. (1)求证:,且; (2)求证:函数在区间内有两个不同的零点.
设函数(其中),区间. (1)求区间的长度(注:区间的长度定义为); (2)把区间的长度记作数列,令,证明:.
已知函数的部分图象如图所示. (1)求的表达式; (2)设,求函数的最小值及相应的的取值集合.