(本小题满分13分)已知函数的图象在上连续不断,定义:,.其中,表示函数在上的最小值,表示函数在上的最大值.若存在最小正整数,使得对任意的成立,则称函数为上的“阶收缩函数”.(1)已知函数,试写出,的表达式,并判断是否为上的“阶收缩函数”,如果是,请求对应的的值;如果不是,请说明理由;(2)已知,函数是上的2阶收缩函数,求的取值范围.
已知向量函数. (1)求函数的最小正周期及单调递减区间; (2)在锐角三角形ABC中,的对边分别是,且满足求的取值范围.
设数列的各项都是正数,且对任意,都有,其中为数列的前项和。 (1)求证数列是等差数列; (2)若数列的前项和为Tn,求Tn。
在中,边、、分别是角、、的对边,且满足. (1)求; (2)若,,求边,的值.
已知函数f(x)=x-ln(x+a)的最小值为0,其中a>0. (1)求a的值; (2)若对任意的x∈[0,+∞),有f(x)≤kx2成立,求实数k的最小值;
已知函数f(x)=ax4lnx+bx4﹣c(x>0)在x=1处取得极值﹣3﹣c,其中a,b,c为常数. (1)试确定a,b的值; (2)讨论函数f(x)的单调区间; (3)若对任意x>0,不等式f(x)≥﹣2c2恒成立,求c的取值范围.