设等差数列{an}的首项a1及公差d都为整数,前n项和为Sn.(1)若a11=0,S14=98,求数列{an}的通项公式;(2)若a1≥6,a11>0,S14≤77,求所有可能的数列{an}的通项公式.
已知双曲线与椭圆共焦点,且以为渐近线,求双曲线的标准方程和离心率
设命题“方程有两个实数根”,命题“方程无实根”,若为假,为假,求实数的取值范围.
有粮食和石油两种物资,可用轮船与飞机两种方式运输,每天每艘轮船和每架飞机的运输效果见表.
现在要在一天内运输至少粮食和石油,需至少安排多少艘轮船和多少架飞机?
已知椭圆G的中心在坐标原点,长轴在轴上,离心率为,两个焦点分别为和,椭圆G上一点到和的距离之和为12. 圆:的圆心为点. (1)求椭圆G的方程 (2)求的面积 (3)问是否存在圆包围椭圆G?请说明理由.
已知集合 (1)当A=B时,求实数的值; (2)当时,求实数的取值范围。