设数列{an}的前n项和Sn=2an-2n.(1)求a3,a4;(2)证明:{an+1-2an}是等比数列;(3)求{an}的通项公式.
设函数f(x)=|2x-1|+|2x-3|,x∈R (Ⅰ)解不等式f(x)≤5; (Ⅱ)若的定义域为R,求实数m的取值范围.
已知曲线C的极坐标方程为,直线的参数方程为( t为参数,0≤<). (Ⅰ)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状; (Ⅱ)若直线经过点(1,0),求直线被曲线C截得的线段AB的长.
已知函数. (Ⅰ)求函数的单调区间; (Ⅱ)若函数上是减函数,求实数a的最小值; (Ⅲ)若,使()成立,求实数a的取值范围.
已知两点及,点在以、为焦点的椭圆上,且、、构成等差数列. (Ⅰ)求椭圆的方程; (Ⅱ)如图,动直线与椭圆有且仅有一个公共点,点是直线上的两点,且,. 求四边形面积的最大值.
如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD丄CD,AB//CD,AB=AD=CD=2,点M在线段EC上. (I)当点M为EC中点时,求证:面; (II)求证:平面BDE丄平面BEC; (III)若平面说BDM与平面ABF所成二面角锐角,且该二面角的余弦值为时,求三棱锥M-BDE的体积.