已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).(1)求证:f(x)是奇函数;(2)如果x∈R+,f(x)<0,并且f(1)=-,试求f(x)在区间[-2,6]上的最值.
如图,在四棱锥中,平面,底面是菱形,,.(Ⅰ)求证:;(Ⅱ)若,求二面角的余弦值.
在中,角、、的对边分别为、、,.(Ⅰ)求角的大小;(Ⅱ)若,,求的值.
(本小题满分15分)已知函数(Ⅰ)求函数的单调区间;(Ⅱ)若,试分别解答以下两小题.(ⅰ)若不等式对任意的恒成立,求实数的取值范围;(ⅱ)若是两个不相等的正数,且,求证:.
(本小题满分13分)已知函数,其中请分别解答以下两小题.(Ⅰ)若函数过点,求函数的解析式.(Ⅱ)如图,点分别是函数的图像在轴两侧与轴的两个相邻交点, 函数图像上的一点,若满足,求函数的最大值.
(本小题满分13分)如图,9个正数排列成3行3列,其中每一行的数成等差数列,每一列的数成等比数列,且所有的公比都是,已知,又设第一行数列的公差为.(Ⅰ)求出,及 ;(Ⅱ)若保持这9个数的位置不动,按照上述规律,补成一个n行n列的数表如下,试写出数表第n行第n列的表达式,并求的值.