已知函数y=f(x)的定义域为R,且对任意a,b∈R,都有f(a+b)=f(a)+f(b),且当x>0时,f(x)<0恒成立,f(3)="-3." (1)证明:函数y=f(x)是R上的减函数;(2)证明:函数y=f(x)是奇函数;(3)试求函数y=f(x)在[m,n](m,n∈Z)上的值域.
设不等式组所表示的平面区域为Dn,记Dn内的整点个数为an(n∈N*)(整点即横坐标和纵坐标均为整数的点).(1)求数列{an}的通项公式;(2)记数列{an}的前n项和为Sn,且Tn=.若对于一切的正整数n,总有Tn≤m,求实数m的取值范围.
已知数列{an}满足a1+a2+…+an=n2(n∈N*).(1)求数列{an}的通项公式;(2)对任意给定的k∈N*,是否存在p,r∈N*(k<p<r)使,,成等差数列?若存在,用k分别表示p和r(只要写出一组);若不存在,请说明理由.
正项数列{an}的前项和满足:-(n2+n-1)Sn-(n2+n)=0.(1)求数列{an}的通项公式an;(2)令bn=,数列{bn}的前n项和为Tn.证明:对于任意的n∈N*,都有Tn<.
设{an}是首项为a,公差为d的等差数列(d≠0),Sn是其前n项和.记bn=,n∈N*,其中c为实数.(1)若c=0,且b1,b2,b4成等比数列,证明:Snk=n2Sk(k,n∈N*);(2)若{bn}是等差数列,证明:c=0.
已知数列{an}中,a1=2,n∈N*,an>0,数列{an}的前n项和为Sn,且满足an+1=.(1)求{Sn}的通项公式;(2)设{bk}是{Sn}中的按从小到大顺序组成的整数数列.①求b3;②存在N(N∈N*),当n≤N时,使得在{Sn}中,数列{bk}有且只有20项,求N的范围.