设a=(-1,1),b=(4,3),c=(5,-2),(1)求证a与b不共线,并求a与b的夹角的余弦值;(2)求c在a方向上的投影;(3)求1和2,使c=1a+2b.
(本小题满分13分)若椭圆:的离心率等于,抛物线: 的焦点在椭圆的顶点上。(Ⅰ)求抛物线的方程;(Ⅱ)求的直线与抛物线交、两点,又过、作抛物线的切线、,当时,求直线的方程;
(本小题满分12分)为迎接国庆60周年,美化城市,某市将一矩形花坛ABCD扩建成一个更大的矩形花园AMPN,如图所示。要求B在AM上,D在AN上,且对角线MN过C点,|AB|=3米,|AD|=2米.(I)要使矩形AMPN的面积大于32平方米,则AN的长应在什么范围内? (Ⅱ)若AN的长度不小于6米,则当AM、AN的长度是多少时,矩形AMPN的面积最小并求出最小面积.
(本小题满分13分)已知函数,. (Ⅰ) 求函数在点(1,)处的切线方程; (Ⅱ) 若函数与在区间上均为增函数,求的取值范围; (Ⅲ) 若方程有唯一解,试求实数的值.
给出三条直线,(1)为何值时,三线共点;(2)时,三条直线能围成一个三角形吗?(3)求当三条直线围成三角形时,的取值范围.
已知点,.在直线上的找一点,使最小,并求出最小值.