(本小题满分12分)(理科做)如图,四棱锥中,平面平面,//,,,且,.(1)求证:平面;(2)求和平面所成角的正弦值;(3)在线段上是否存在一点使得平面平面,请说明理由.(文科做)已知函数,其中是常数.(1)当时,求曲线在点处的切线方程;(2)若存在实数,使得关于的方程在上有两个不相等的实数根,求的取值范围.
设函数的定义域为集合,函数的定义域为集合,已知:;:满足,且若则为真命题,求实数的取值范围.
已知函数,(为常数)(1)当时恒成立,求实数的取值范围;(2)若函数有对称中心为A(1,0),求证:函数的切线在切点处穿过图象的充要条件是恰为函数在点A处的切线.(直线穿过曲线是指:直线与曲线有交点,且在交点左右附近曲线在直线异侧)
已知二次函数与交于两点且,奇函数,当时,与都在取到最小值.(1)求的解析式;(2)若与图象恰有两个不同的交点,求实数的取值范围.
已知:三个内角A,B,C所对的边,向量,设(1)若,求角;(2)在(1)的条件下,若,求三角形ABC的面积.
已知是等差数列的前项和,满足;是数列的前项和,满足:.(1)求数列,的通项公式;(2)求数列的前项和.