设两个非零向量a与b不共线,(1)若=a+b,=2a+8b,=3(a-b),求证:A、B、D三点共线;(2)试确定实数k,使ka+b和a+kb共线.
如图,三棱柱中,侧棱垂直底面,,,是棱的中点。(1)证明:⊥平面(2)设,求几何体的体积。
已知公差不为零的等差数列,满足,且成等比数列.(1)求数列的通项公式; (2)设,求数列前项的和为.
如图,在中,,点在边上,且(1)求(2)求的长.
(本小题满分为12分)某种商品原来每件售价为25元,年销售8万件.(Ⅰ)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(Ⅱ)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到元.公司拟投入万元作为技改费用,投入50万元作为固定宣传费用,投入万元作为浮动宣传费用.试问:当该商品明年的销售量至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.
(本小题满分为12分)设(Ⅰ)若在上存在单调递增区间,求取值范围;(Ⅱ)当时,在上的最小值为,求在该区间上的最大值.