在500mL的水中有一个草履虫,现从中随机取出2mL水样放到显微镜下观察,求发现草履虫的概率。
已知椭圆C1:+y2=1,椭圆C2以C1的长轴为短轴,且与C1有相同的离心率.(1)求椭圆C2的方程;(2)设O为坐标原点,点A,B分别在椭圆C1和C2上,=2,求直线AB的方程.
已知直线l:y=x+m,m∈R.(1)若以点M(2,0)为圆心的圆与直线l相切于点P,且点P在y轴上,求该圆的方程;(2)若直线l关于x轴对称的直线为l′,问直线l′与抛物线C:x2=4y是否相切?说明理由.
在平面直角坐标系xOy中,曲线y=x2-6x+1与坐标轴的交点都在圆C上.(1)求圆C的方程;(2)若圆C与直线x-y+a=0交于A,B两点,且OA⊥OB,求a的值.
已知点A(-3,0),B(3,0),动点P满足|PA|=2|PB|.(1)若点P的轨迹为曲线C,求此曲线的方程;(2)若点Q在直线l1:x+y+3=0上,直线l2经过点Q且与曲线C只有一个公共点M,求|QM|的最小值.
如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD的中点.(1)求证:B1E⊥AD1.(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.(3)若二面角A-B1E-A1的大小为30°,求AB的长.