利用随机模拟法求如图3-3-11所示正方形内随机地投掷飞镖,求飞镖落在阴影部分的概率.图3-3-11
(本题10分)某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30min抽取一包产品,称其重量,分别记录抽查数据如下: 甲:102, 101, 99, 98, 103, 98, 99; 乙:110, 115, 90, 85, 75, 115, 110。 (Ⅰ)这种抽样方法是哪一种? (Ⅱ)将这两组数据用茎叶图表示出来; (Ⅲ)将两组数据比较:说明哪个车间的产品较稳定。
(本题12分)直线l:y=kx+1与双曲线C:的右支交于不同的两点A,B. (Ⅰ)求实数k的取值范围; (Ⅱ)是否存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F?若存在,求出k的值;若不存在,说明理由.
(本题12分)已知函数. ⑴若函数的图象过原点,且在原点处的切线斜率是,求的值; ⑵若函数在区间上不单调,求的取值范围.
(本题12分)如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的投影,M为PD上一点,且|MD|=|PD|. (Ⅰ)当P在圆上运动时,求点M的轨迹C的方程; (Ⅱ)求过点(3,0)且斜率为的直线被曲线C所截线段的长度.
(本题12分)一个质地均匀的正四面体的四个面上分别标示着数字1、2、3、4,一个质地均匀的骰子(正方体)的六个面上分别标示数字1、2、3、4、5、6,先后抛掷一次正四面体和骰子。 ⑴列举出全部基本事件; ⑵求被压在底部的两个数字之和小于5的概率; ⑶求正四面体上被压住的数字不小于骰子上被压住的数字的概率。