在平面直角坐标系xOy中,经过点(0,)且斜率为k的直线l与椭圆+y2=1有两个不同的交点P和Q.(1)求k的取值范围;(2)设椭圆与x轴正半轴、y轴正半轴的交点分别为A、B,是否存在常数k,使得向量+与共线?如果存在,求k值;如果不存在,请说明理由.
已知函数(1)求函数的最小正周期;(2)求函数在区间上的最大值和最小值,并求此时的值.
已知不等式.(1)当时解此不等式;(2)若对于任意的实数,此不等式恒成立,求实数的取值范围.
设函数,.(1)判断函数在上的单调性;(2)证明:对任意正数a,存在正数x,使不等式成立.
已知数列中,函数.(1)若正项数列满足,试求出,,,由此归纳出通项,并加以证明;(2)若正项数列满足(n∈N*),数列的前项和为Tn,且,求证:.
为了防止受到核污染的产品影响我国民众的身体健康,要求产品在进入市场前必须进行两轮核辐射检测,只有两轮都合格才能进行销售,否则不能销售.已知某产品第一轮检测不合格的概率为,第二轮检测不合格的概率为,两轮检测是否合格相互没有影响.(Ⅰ)求该产品不能销售的概率;(Ⅱ)如果产品可以销售,则每件产品可获利40元;如果产品不能销售,则每件产品亏损80元(即获利﹣80元).已知一箱中有产品4件,记一箱产品获利X元,求X的分布列,并求出均值E(X).