为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得数据整理后,画出频率分布直方图如图所示,已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数为5.(1)求第四小组的频率;(2)参加这次测试的学生人数是多少?(3)在这次测试中,学生跳绳次数的中位数落在第几小组内?
(本小题满分14分) 设函数. (1)若函数在区间(-2,0)内恰有两个零点,求a的取值范围; (2)当a=1时,求函数在区间[t,t+3]上的最大值.
(本小题满分14分) 设双曲线C:(a>0,b>0)的一个焦点坐标为(,0),离心率, A、B是双曲线上的两点,AB的中点M(1,2). (1)求双曲线C的方程; (2)求直线AB方程; (3)如果线段AB的垂直平分线与双曲线交于C、D两点,那么A、B、C、D四点是否共圆?为什么?
(本小题满分14分) 已知数列的前项和为,且满足. (1)求,的值; (2)求; (3)设,数列的前项和为,求证:.
(本小题满分14分) 如图所示,平面平面,且四边形为矩形,四边形为直角梯形,,,,. (1)求证平面; (2)求平面与平面所成锐二面角的余弦值; (3)求直线与平面所成角的余弦值.
(本小题满分12分) 已知数列的前项和满足:,且 (1)求 (2)猜想的通项公式,并用数学归纳法证明