已知椭圆C的中心为平面直角坐标系xOy的原点,焦点在x轴上,它的一个顶点到两个焦点的距离分别是7和1.(1)求椭圆C的方程;(2)若P为椭圆C上的动点,M为过P且垂直于x轴的直线上的一点,=λ,求点M的轨迹方程,并说明轨迹是什么曲线.
已知坐标平面上点与两个定点的距离之比等于5. (1)求点的轨迹方程,并说明轨迹是什么图形; (2)记(1)中的轨迹为,过点的直线被所截得的线段的长为8,求直线的方程
如图,在四棱锥中,底面,,,是的中点. (Ⅰ)求和平面所成的角的大小; (Ⅱ)证明平面; (Ⅲ)求二面角的正弦值.
如图,在四棱锥中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点. 求证:(1)直线EF∥平面PCD; (2)平面BEF⊥平面PAD
平行四边形的两邻边所在直线的方程为x+y+1=0及3x-4=0,其对角线的交点是D(3,3),求另两边所在的直线的方程.
已知函数(其中为常数). (Ⅰ)当时,求函数的单调区间; (Ⅱ) 当时,设函数的3个极值点为,且. 证明:.