一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是.(1)设X为这名学生在途中遇到红灯的次数,求X的分布列;(2)设Y为这名学生在首次停车前经过的路口数,求Y的概率分布;(3)求这名学生在途中至少遇到一次红灯的概率.
如图,AB是⊙O的直径,BC是⊙O的切线,B为切点,OC平行于弦AD,连结CD. (1)求证:CD是⊙O的切线; (2)过点D作DE⊥AB于点E,交AC于点P,求证:P点平分线段DE.
如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E,F分别为弦AB与弦AC上的点,且BC·AE=DC·AF,B,E,F,C四点共圆. (1)证明:CA是△ABC外接圆的直径; (2)若DB=BE=EA,求过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值.
如图,过圆O外一点P作该圆的两条割线PAB和PCD,分别交圆O于点A,B,C,D,弦AD和BC交于点Q,割线PEF经过点Q交圆O于点E,F,点M在EF上,且∠BAD=∠BMF. (1)求证:PA·PB=PM·PQ; (2)求证:∠BMD=∠BOD.
如图,AB为⊙O的直径,直线CD与⊙O相切于E,AD垂直CD于D,BC垂直CD于C,EF垂直AB于F,连接AE,BE.证明: (1)∠FEB=∠CEB; (2)EF2=AD·BC.
如图,圆O的半径OC垂直于直径AB,弦CD交半径 OA于E,过D的切线与BA的延长线交于M. (1)求证:MD=ME; (2)设圆O的半径为1,MD=,求MA及CE的长.