如图所示,在三棱柱ABC—A1B1C1中,四边形A1ABB1是菱形,四边形BCC1B1是矩形,AB⊥BC,CB=3,AB=4,∠A1AB=60°.(1)求证:平面CA1B⊥平面A1ABB1;(2)求直线A1C与平面BCC1B1所成角的正切值;(3)求点C1到平面A1CB的距离.
某工厂师徒二人各加工相同型号的零件2个,是否加工出精品均互不影响.已知师父加工一个零件是精品的概率为,师徒二人各加工2个零件都是精品的概率为 (I)求徒弟加工2个零件都是精品的概率; (II)求徒弟加工该零件的精品数多于师父的概率; (III)设师徒二人加工出的4个零件中精品个数为,求的分布列与均值E.
如图,在底面是正方形的四棱锥P—ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点. (I)求证:BD⊥FG; (II)确定点G在线段AC上的位置,使FG//平面PBD,并说明理由. (III)当二面角B—PC—D的大小为时,求PC与底面ABCD所成角的正切值.
已知函数的图象经过点 (I)求实数a、b的值; (II)若,求函数的最大值及此时x的值.
已知函数 (1)若,求曲线处的切线; (2)若函数在其定义域内为增函数,求正实数的取值范围; (3)设函数上至少存在一点,使得成立,求实数的取值范围。
已知椭圆的离心率为,长轴长为,直线交椭圆于不同的两点A、B。 (1)求椭圆的方程; (2)求的值(O点为坐标原点); (3)若坐标原点O到直线的距离为,求面积的最大值。