如图所示,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=, BC=1,PA=2,E为PD的中点. (1)求直线AC与PB所成角的余弦值; (2)在侧面PAB内找一点N,使NE⊥平面PAC,并求出N点到AB和AP的距离.
在平面直角坐标系xOy中,直线l的参数方程为 (t为参数),曲线C的参数方程为 (θ为参数).试求直线l和曲线C的普通方程,并求出它们的公共点的坐
已知在直角坐标系xOy中,曲线C的参数方程为 (θ为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l的方程为ρsin =2.(1)求曲线C在极坐标系中的方程;(2)求直线l被曲线C截得的弦长.
在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系.已知点A的极坐标为,直线l的极坐标方程为ρcos=a,且点A在直线l上.(1)求a的值及直线l的直角坐标方程; (2)圆C的参数方程为 (α为参数),试判断直线l与圆C的位置关系.
在极坐标系中,已知圆C经过点P,圆心为直线ρsin=-与极轴的交点,求圆C的极坐标方程.
(1)设x≥1,y≥1,证明x+y+≤++xy;(2)1<a≤b≤c,证明logab+logbc+logca≤logba+logcb+logac.