如图所示,已知直三棱柱ABC—A1B1C1中,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1,D、E、F分别为B1A、C1C、BC的中点.求证:(1)DE∥平面ABC;(2)B1F⊥平面AEF.
设f(x)=x3+ax2+bx+1的导数f′(x)满足f′(1)=2a,f′(2)=-b,其中a,b∈R.①求曲线y=f(x)在点(1,f(1))处的切线方程;②设g(x)=f′(x)e-x,求g(x)的极值.
设f(x)=,其中a为正实数.①当a=时,求f(x)的极值点;②若f(x)为R上的单调函数,求a的取值范围.
已知f(x)=x+,h(x)=,设F(x)=f(x)-h(x),求F(x)的单调区间与极值.
已知a,b为常数,且a≠0,函数f(x)=-ax+b+axln x,f(e)=2.①求b;②求函数f(x)的单调区间.
若函数f(x)=ax3-x2+x-5在(-∞,+∞)上单调递增,求a的取值范围.