如图所示,在四棱锥P—ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD交于点O,PO⊥平面ABCD,PB与平面ABCD所成角为60°.(1)求四棱锥的体积;(2)若E是PB的中点,求异面直线DE与PA所成角的余弦值.
已知函数(其中),、是函数的两个不同的零点,且的最小值为. (1)求的值; (2)若,求的值.
设函数. (1)对于任意实数,恒成立,求的最大值; (2)若方程有且仅有一个实根,求的取值范围.
已知函数的最大值为,且,是相邻的两对称轴方程. (1)求函数在上的值域; (2)中,,角所对的边分别是,且,,求的面积.
设函数. (1)写出函数f(x)的最小正周期及单调递增区间; (2)当时,函数f(x)的最大值与最小值的和为,求的值.
已知数列是等差数列,且,;又若是各项为正数的等比数列,且满足,其前项和为,. (1)分别求数列,的通项公式,; (2)设数列的前项和为,求的表达式,并求的最小值.