如图所示,长方体ABCD—A′B′C′D′中,用截面截下一个棱锥C—A′DD′, 求棱锥C—A′DD′的体积与剩余部分的体积之比.
(本小题满分12分) 设(),比较、、的大小,并证明你的结论
(本小题满分12分) 设二次函数,函数的两个零点为. (1)若求不等式的解集; (2)若且,比较与的大小.
(本小题满分12分) 设椭圆C:+=1(a>b>0)的左焦点为F,过点F的直线与椭圆C相交于A,B两点,直线l的倾斜角为60°,AF=2FB. (I)求椭圆C的离心率; (II)如果|AB|=,求椭圆C的方程.
(本小题满分12分) 已知函数f(x)=x2(x-3a)+1(a>0,x∈R). (I)求函数y=f(x)的极值; (II)函数y=f(x)在(0,2)上单调递减,求实数a的取值范围; (III)若在区间(0,+∞)上存在实数x0,使得不等式f(x0)-4a3≤0能成立,求实数a的取值范围.
(本小题满分12分) 某同学参加3门课程的考试.假设该同学第一门课程取得优秀成绩的概率为,第二、第三门课程取得优秀成绩的概率分别为p,q(p>q),且不同课程是否取得优秀成绩相互独立,记ξ为该生取得优秀成绩的课程数,其分布列为
(I)求该生至少有1门课程取得优秀成绩的概率; (II)求p,q的值; (III)求数学期望Eξ.