如图所示,长方体ABCD-A1B1C1D1中,AB=a,BC=b,BB1=c,并且a>b>c>0.求沿着长方体的表面自A到C1 的最短线路的长.
设数列{an}的前n项和为Sn,且,n=1,2,3 (1)求a1,a2;(2)求Sn与Sn﹣1(n≥2)的关系式,并证明数列{}是等差数列;(3)求S1•S2•S3 S2011•S2012的值.
如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,,,平面底面,为中点,M是棱PC上的点,.(1)若点M是棱PC的中点,求证:平面;(2)求证:平面底面;(3)若二面角M-BQ-C为,设PM=tMC,试确定t的值.
乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.(1)求甲以4比1获胜的概率;(2)求乙获胜且比赛局数多于5局的概率;(3)求比赛局数的分布列.
在中,角、、所对的边分别为,.(1)求角的大小;(2)若,求函数的最小正周期和单调递增区间.
已知椭圆方程为,过右焦点斜率为1的直线到原点的距离为.(1)求椭圆方程.(2)已知为椭圆的左右两个顶点,为椭圆在第一象限内的一点,为过点且垂直轴的直线,点为直线与直线的交点,点为以为直径的圆与直线的一个交点,求证:三点共线.