乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.(1)求甲以4比1获胜的概率;(2)求乙获胜且比赛局数多于5局的概率;(3)求比赛局数的分布列.
(本小题满分12分)设函数.(1)若函数在处有极值,求函数的最大值;(2)①是否存在实数,使得关于的不等式在上恒成立?若存在,求出的取值范围;若不存在,说明理由;②证明:不等式
(本小题满分12分)已知椭圆的左,右顶点分别为,圆上有一动点,点在轴的上方,,直线交椭圆于点,连接.(1)若,求△的面积;(2)设直线的斜率存在且分别为,若,求的取值范围.
(本小题满分12分)如图,在四棱锥中,平面平面,,在锐角中,并且,.(1)点是上的一点,证明:平面平面;(2)若与平面成角,当面平面时,求点到平面的距离.
(本小题满分12分)我国新修订的《环境空气质量标准》指出空气质量指数在为优秀,各类人群可正常活动.市环保局对我市2014年进行为期一年的空气质量监测,得到每天的空气质量指数,从中随机抽取50个作为样本进行分析报告,样本数据分组区间为,,,,由此得到样本的空气质量指数频率分布直方图,如图.(1)求的值;(2)根据样本数据,试估计这一年度的空气质量指数的平均值;(3)如果空气质量指数不超过,就认定空气质量为“特优等级”,则从这一年的监测数据中随机抽取天的数值,其中达到“特优等级”的天数为,求的分布列和数学期望.
(本小题满分12分)“德是”号飞船返回舱顺利到达地球后,为了及时将航天员救出,地面指挥中心在返回舱预计到达的区域安排了同一条直线上的三个救援中心(记为).当返回舱距地面1万米的点时(假定以后垂直下落,并在点着陆),救援中心测得飞船位于其南偏东方向,仰角为,救援中心测得飞船位于其南偏西方向,仰角为.救援中心测得着陆点位于其正东方向.(1)求两救援中心间的距离; (2)救援中心与着陆点间的距离.