某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h=4m,仰角∠ABE=,∠ADE=.(1)该小组已经测得一组、的值,tan=1.24,tan=1.20,请据此算出H的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使与之差较大,可以提高测量精确度.若电视塔的实际高度为125m,试问d为多少时,-最大?
(本小题满分12分)已知数列为方向向量的直线上,(I)求数列的通项公式; (II)求证:(其中e为自然对数的底数); (III)记 求证:
(本小题满分12分)已知双曲线,焦点F2到渐近线的距离为,两条准线之间的距离为1。(I)求此双曲线的方程;(II)过双曲线焦点F1的直线与双曲线的两支分别相交于A、B两点,过焦点F2且与AB平行的直线与双曲线分别相交于C、D两点,若A、B、C、D这四点依次构成平行四边形ABCD,且,求直线AB的方程。
(本小题满分13分)某企业准备招聘一批大学生到本单位就业,但在签约前要对他们的某项专业技能进行测试。在待测试的某一个小组中有男、女生共10人(其中女生人数多于男生人数),如果从中随机选2人参加测试,其中恰为一男一女的概率为(I)求该小组中女生的人数;(II)假设此项专业技能测试对该小组的学生而言,每个女生通过的概率均为,每个男生通过的概率均为,现对该小组中男生甲、男生乙和女生丙3个人进行测试,记这3人中通过测试的人数为随机变量,求的分布列和数学期望。
(本小题满分13分) 如图,已知正方形ABCD和梯形ACEF所在的平面互相垂直,,CE//AF, (I)求证:CM//平面BDF; (II)求异面直线CM与FD所成角的大小; (III)求二面角A—DF—B的大小。
(本小题满分13分) 已知点 (I)若向量的值;(II)若向量的取值范围。