某次网球比赛分四个阶段,只有上一阶段的胜者,才能参加继续下一阶段的比赛,否则就被淘汰,选手每闯过一个阶段,个人积10分,否则积0分.甲、乙两个网球选手参加了此次比赛.已知甲每个阶段取胜的概率为,乙每个阶段取胜的概率为.(1)求甲、乙两人最后积分之和为20分的概率;(2)设甲的最后积分为X,求X的分布列和数学期望.
数列的前n项和记为,(1)t为何值时,数列是等比数列?(2)在(1)的条件下,若等差数列的前n项和有最大值,且,又成等比数列,求。
(本小题满分14分)等差数列的首项与公差均大于零,是数列的前n项和,对于任意,都有成立(1)求数列的公差和的值;(2)设,且数列的前n项和的最小值为,求 的值.
(本小题满分12分)已知海岛B在海岛A的北偏东45°方向上,A、B相距10海里,小船甲从海岛B以2海里/小时的速度沿直线向海岛A移动,同时小船乙从海岛A出发沿北偏西15°方向也以2海里/小时的速度移动。(1)经过1小时后,甲、乙两小船相距多少海里? (2)在航行过程中,小船甲是否可能处于小船乙的正东方向?若可能,请求出所需时间,若不可能,请说明理由。
(本小题满分12分)已知数列中,且 (1)若数列为等差数列,求实数的值;(2)求数列的前项和.
(本小题满分12分)已知a、b、c是△ABC三边长,关于x的方程的两根之差的平方等于4,△ABC的面积(1)求C;(2)求a、b的值.