求两条平行线l1:6x+8y=20和l2:3x+4y-15=0的距离.
(本题12分)已知函数在处取得极值.(1) 求;(2 )设函数,如果在开区间上存在极小值,求实数的取值范围.
(本题12分)若关于x的函数在[1,2]上有零点,求m的范围
(本题12分)已知函数.(1)求证:不论为何实数 总是为增函数;(2)确定的值,使为奇函数; (3)在(2)条件下,解不等式:
某射手每次射击击中目标的概率是,且各次射击的结果互不影响.(1)假设这名射手射击5次,求恰有2次击中目标的概率;(2)假设这名射手射击5次,求有3次连续击中目标、另外2次未击中目标的概率;
口袋里装有7个大小相同小球, 其中三个标有数字1, 两个标有数字2, 一个标有数字3, 一个标有数字4.(Ⅰ) 第一次从口袋里任意取一球, 放回口袋里后第二次再任意取一球, 记第一次与第二次取到小球上的数字之和为. 当为何值时, 其发生的概率最大? 说明理由; (Ⅱ) 第一次从口袋里任意取一球, 不再放回口袋里, 第二次再任意取一球, 记第一次与第二次取到小球上的数字之和为. 求的分布列和数学期望.