某工厂生产甲、乙两种产品,计划每天每种产品的生产量不少于15吨,已知生产甲产品1吨,需煤9吨,电力4千瓦时,劳力3个;生产乙产品1吨,需煤4吨,电力5千瓦时,劳力10个;甲产品每吨的利润为7万元,乙产品每吨的利润为12万元;但每天用煤不超过300吨,电力不超过200千瓦时,劳力只有300个.问每天生产甲、乙两种产品各多少吨,才能使利润总额达到最大?
已知是单调递增的等差数列,首项,前项和为;数列是等比数列,首项 (1)求的通项公式; (2)令求的前20项和.
设函数. (1)求的最小正周期; (2)当时,求实数的值,使函数的值域恰为并求此时在上的对称中心.
已知抛物线:.过点的直线交于两点.抛物线在点处的切线与在点处的切线交于点. (Ⅰ)若直线的斜率为1,求; (Ⅱ)求面积的最小值.
如图,在直三棱柱中,,. (Ⅰ)求证:平面; (Ⅱ)若为的中点,求与平面所成的角.
已知等差数列的首项,,前项和为. (I)求及; (Ⅱ)设,,求的最大值.