已知以原点为中心的双曲线的一条准线方程为,离心率.求该双曲线的方程;如题(20)图,点的坐标为,是圆上的点,点在双曲线右支上,求的最小值,并求此时点的坐标;
(本小题满分12分)已知椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线与以椭圆的右焦点为圆心,以椭圆的长半轴长为半径的圆相切. (Ⅰ)求椭圆的方程; (Ⅱ)设为椭圆上一点,若过点的直线与椭圆相交于不同的两点和,满足(为坐标原点),求实数的取值范围.
(本小题满分12分)如图,已知四棱锥的底面为菱形,,,. (Ⅰ)求证:; (Ⅱ)求二面角的余弦值.
(本小题满分12分)将一个半径适当的小球放入如图所示的容器最上方的入口处,小球自由下落,小球在下落的过程中,将遇到黑色障碍物次,最后落入袋或袋中.已知小球每次遇到障碍物时,向左、右两边下落的概率分别是 (Ⅰ)分别求出小球落入袋和袋中的概率; (Ⅱ)在容器的入口处依次放入个小球,记为落入袋中的小球个数,求的分布列和数学期望.
(本小题满分12分)已知正项等差数列的前项和为,且满足,. (Ⅰ)求数列的通项公式; (Ⅱ)若数列满足,,求数列的前项和
(本小题满分14分)已知函数(是常数),曲线在点处的切线在轴上的截距为. (1)求的值; (2),讨论直线与曲线的公共点的个数.