如图,已知,,任意点关于点的对称点为,点关于点的对称点为,用、表示向量.
已知曲线 C : ( 5 - m ) x 2 + ( m - 2 ) y 2 = 8 ( m ∈ R ) . (1)若曲线 C 是焦点在x轴点上的椭圆,求 m 的取值范围; (2)设 m = 4 ,曲线 C 与 y 轴的交点为 A , B (点 A 位于点 B 的上方),直线 y = k x + 4 与曲线 C 交于不同的两点 M , N ,直线 y = 1 与直线 B M 交于点 G .求证: A , G , N 三点共线.
已知函数,,.
(1)若曲线与曲线在它们的交点处具有公共切线,求的值 (2)当时,若函数的单调区间,并求其在区间上的最大值.
近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱。为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):
(Ⅰ)试估计厨余垃圾投放正确的概率 (Ⅱ)试估计生活垃圾投放错误的概率 (Ⅲ)假设厨余垃圾在"厨余垃圾"箱、"可回收物"箱、"其他垃圾"箱的投放量分别为,其中,.当数据的方差最大时,写出的值(结论不要求证明),并求此时的值。 (注:,其中为数据的平均数)
如图1,在中,,,,分别是上的点,且,,将沿折起到的位置,使,如图2. (1)求证:平面; (2)若是的中点,求与平面所成角的大小; (3)线段上是否存在点,使平面与平面垂直?说明理由
已知函数
(Ⅰ)求的定义域及最小正周期 (Ⅱ)求的单调递增区间。