设为常数,且证明对任意假设对任意有,求的取值范围.
(本小题满分12分) 对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点已知函数f(x)=ax2+(b+1)x+(b–1)(a≠0) (1)若a=1,b=–2时,求f(x)的不动点; (2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围;
(本小题满分12分) 一个小服装厂生产某种风衣,月销售量x(件)与售价P(元/件)之间的关系为P=160-2x,生产x件的成本R=500+30x元 (1)该厂的月产量多大时,月获得的利润不少于1300元? (2)当月产量为多少时,可获得最大利润?最大利润是多少元?
(本小题满分12分) 已知,设P:函数在R上单调递减,Q:不等式的解集为R 如果P和Q有且仅有一个正确,求 的取值范围
(本小题满分10分) 已知函数在定义域上为增函数,且满足 (1)求的值 (2)解不等式
已知椭圆的中心在原点,焦点在轴上,点、分别是椭圆的左、右焦点,在椭圆的右准线上的点,满足线段的中垂线过点.直线:为动直线,且直线与椭圆交于不同的两点、. (Ⅰ)求椭圆C的方程; (Ⅱ)若在椭圆上存在点,满足(为坐标原点), 求实数的取值范围; (Ⅲ)在(Ⅱ)的条件下,当取何值时,的面积最大,并求出这个最大值.