某校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作. 规定:至少正确完成其中2题的便可提高通过. 已知6道备选题中考生甲有4题能正确完成,2题不能完成;考生乙每题正确完成的概率都是,且每题正确完成与否互不影响. 求: 分别写出甲、乙两考生正确完成题数的概率分布列,并计算数学期望; 试用统计知识分析比较两考生的实验操作能力.
( 已知. (1)判断并证明的奇偶性; (2)判断并证明的单调性; (3)若对任意恒成立,求的取值范围.
(本题满分14分) 设数列的前项和为,已知,, (1)求数列的通项公式; (2)若,数列的前项和为,证明:.
已知半径为的圆的圆心在轴上,圆心的横坐标是整数,且与直线相切. (1)求圆的方程; (2)设直线与圆相交于两点,求实数的取值范围; (3) 在(2)的条件下,是否存在实数,使得弦的垂直平分线过点,若存在,求出实数的值;若不存在,请说明理由.
(本小题满分14分) 如图1,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示. (1) 证明:AD⊥平面PBC; (2) 在∠ACB的平分线上确定一点Q,使得PQ∥平面ABD,并求此时PQ的长.
在中,角的对边分别为,,的面积为. (1)求,的值; (2)求的值.