某校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作. 规定:至少正确完成其中2题的便可提高通过. 已知6道备选题中考生甲有4题能正确完成,2题不能完成;考生乙每题正确完成的概率都是,且每题正确完成与否互不影响. 求: 分别写出甲、乙两考生正确完成题数的概率分布列,并计算数学期望; 试用统计知识分析比较两考生的实验操作能力.
已知向量,,且. (1)求的值; (2 )求的值.
已知关于的方程:. (1)当为何值时,方程C表示圆。 (2)若圆C与直线相交于M,N两点,且|MN|=,求的值。 (3)在(2)条件下,是否存在直线,使得圆上有四点到直线的距离为,若存在,求出的范围,若不存在,说明理由。
如图,是⊙的直径,垂直于⊙所在的平面,是圆周上不同于的一动点. (1)证明:面PAC面PBC; (2)若,则当直线与平面所成角正切值为时,求直线与平面所成角的正弦值.
已知:且, (1)求的取值范围; (2)求函数的最大值和最小值及对应的x值。
如图,在三棱柱中,平面, ,点是的中点. 求证:(1);(2)平面.