某校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作. 规定:至少正确完成其中2题的便可提高通过. 已知6道备选题中考生甲有4题能正确完成,2题不能完成;考生乙每题正确完成的概率都是,且每题正确完成与否互不影响. 求: 分别写出甲、乙两考生正确完成题数的概率分布列,并计算数学期望; 试用统计知识分析比较两考生的实验操作能力.
(本小题满分13分)已知直线经过点A,求: (1)直线在两坐标轴上的截距相等的直线方程; (2)直线与两坐标轴的正向围成三角形面积最小时的直线方程; (3)求圆关于直线OA对称的圆的方程。
(本小题满分13分)某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出。当每辆车的月租金每增加50元时,未租出的车将会增加一辆。租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元。 (1)当每辆车的月租金定为3600元时,能租出多少辆车? (2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
(本小题满分13分)已知函数在时有极值,其图象在点处的切线与直线平行. (1)求的值和函数的单调区间; (2)若当时,恒有,试确定的取值范围.
(本小题满分13分)设集合,,若。求实数a的取值范围。
已知函数()的单调递减区间是,且满足. (Ⅰ)求的解析式; (Ⅱ)对任意, 关于的不等式在上有解,求实数的取值范围.