某电器公司生产型电脑.1993年这种电脑每台平均生产成本为5000元,并以纯利润确定出厂价.从1994年开始,公司通过更新设备和加强管理,使生产成本逐年降低.到1997年,尽管型电脑出厂价仅是1993年出厂价的,但却实现了纯利润的高效益.(1) 求1997年每台型电脑的生产成本;(2) 以1993年的生产成本为基数,求1993年至1997年生产成本平均每年降低的百分数(精确到,以下数据可供参考:,).
(本小题满分12分) 在如图所示的空间几何体中,△ABC,△ACD都是等边三角形,AE=CE,DE//平面ABC,平面ACD⊥平面ABC。 (1)求证:DE⊥平面ACD; (2)若AB=BE=2,求多面体ABCDE的体积。
(本小题满分12分) 某学校为了了解学生的日平均睡眠时间(单位:h),随机选择了n名学生进行调查,下表是这n名学生的日睡眠时间的频率分布表。
(1)求n的值.若,将表中数据补全,并画出频率分布直方图. (2)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是5)作为代表.若据此计算的上述数据的平均值为7.2,求的值,并由此估计该学校学生的日平均睡眠时间在7.5小时以上的概率.
(本小题满分12分) 在,角A,B,C的对边分别为。 (1)判断的形状; (2)若的值。
(本小题14分)已知函数在处取得极值。 (Ⅰ)求函数的解析式; (Ⅱ)求证:对于区间上任意两个自变量的值,都有; (Ⅲ)若过点可作曲线的三条切线,求实数的取值范围。
(本小题满分12分)如图所示,为半圆,AB为半圆直径,O为半圆圆心,且OD⊥AB,Q为线段OD的中点,已知|AB|=4,曲线C过Q点,动点P在曲线C上运动且保持|PA|+|PB|的值不变. (Ⅰ)建立适当的平面直角坐标系,求曲线C的方程; (Ⅱ)过D点的直线l与曲线C相交于不同的两点M、N,问是否存在这样的直线使与平行,若平行,求出直线的方程, 若不平行,请说明理由.