已知,,试比较和的大小.
如图,四棱锥 P - A B C D 中,底面 A B C D 为矩形, P A ⊥ 底面 A B C D , P A = A B = 2 ,点 E 是棱 P B 的中点. (Ⅰ)证明: A E ⊥ 平面 P B C ; (Ⅱ)若 A D = 1 ,求二面角 B - E C - D
已知函数 f x = a x 3 + x 2 + b x (其中常数 a , b ∈ R ), g x = f x + f ` x 是奇函数. (Ⅰ)求 f x 的表达式; (Ⅱ)讨论 g x 的单调性,并求 g x 在区间[1,2]上的最大值和最小值.
设 △ A B C 的内角 A , B , C 的对边长分别为 a , b , c ,且 3 b 2 + 3 c 2 - 3 a 2 = 4 2 b c . (Ⅰ) 求 sin A 的值; (Ⅱ)求 2 sin ( A + π 4 ) sin ( B + C + π 4 ) 1 - cos 2 A 的值.
在甲、乙等6个单位参加的一次"唱读讲传"演出活动中,每个单位的节目集中安排在一起. 若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,……,6),求: (Ⅰ)甲、乙两单位的演出序号均为偶数的概率; (Ⅱ)甲、乙两单位的演出序号不相邻的概率.
已知 { a n } 是首项为19,公差为-2的等差数列, S n 为 { a n } 的前 n 项和. (Ⅰ)求通项 a n 及 S n ; (Ⅱ)设 { b n - a n } 是首项为1,公比为3的等比数列,求数列 { b n } 的通项公式及其前 n 项和 T n .