.已知函数的图像在处的切线方程为; (1)求函数的解析式; (2)求函数在上的最值.
(本小题满分12分) 已知数列满足(p为常数) (1)求p的值及数列的通项公式; (2)令,求数列的前n项和
抛物线D以双曲线的焦点为焦点. (1)求抛物线D的标准方程; (2)过直线上的动点P作抛物线D的两条切线,切点为A,B.求证:直线AB过定点Q,并求出Q的坐标; (3)在(2)的条件下,若直线PQ交抛物线D于M,N两点,求证:|PM|·|QN|=|QM|·|PN|
已知函数 (1)若函数存在单调递减区间,求a的取值范围; (2)当a>0时,试讨论这两个函数图象的交点个数.
(本小题满分12分) 已知各项均为正数的数列的前n项和满足 (1)求数列的通项公式; (2)设数列为数列的前n项和,求证:
(本小题满分12分) 如图,四棱锥P—ABCD中,底面ABCD为矩形,PD垂直于底面ABCD,AD=PD=2,E、F分别为CD、PB的中点. (1)求证:EF⊥平面PAB; (2)设求直线AC与平面AEF所成角的正弦值.