如图,过椭圆的右焦点作一直线交椭圆于两点,且到直线的距离之和为,求直线的方程.
已知椭圆E:+=1(a>b>0),以F1(-c,0)为圆心,以a-c为半径作圆F1,过点B2(0,b)作圆F1的两条切线,设切点为M、N.(1)若过两个切点M、N的直线恰好经过点B1(0,-b)时,求此椭圆的离心率;(2)若直线MN的斜率为-1,且原点到直线MN的距离为4(-1),求此时的椭圆方程;(3)是否存在椭圆E,使得直线MN的斜率k在区内取值?若存在,求出椭圆E的离心率e的取值范围;若不存在,请说明理由.
已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4且位于x轴上方的点,A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M.(1)求抛物线方程;(2)过M作MN⊥FA,垂足为N,求点N的坐标
已知M(0,-2),点A在x轴上,点B在y轴的正半轴,点P在直线AB上,且满足=,·=0.(1)当点A在x轴上移动时,求动点P的轨迹C的方程;(2)过(-2,0)的直线l与轨迹C交于E、F两点,又过E、F作轨迹C的切线l1、l2,当l1⊥l2,求直线l的方程.
如右图所示,设抛物线方程为x2=2py(p>0),M为直线y=-2p上任意一点,过M引抛物线的切线,切点分别为A、B.(1)求证:A、M、B三点的横坐标成等差数列;(2)已知当M点的坐标为(2,-2p)时,=4,求此时抛物线的方程;
如右图所示,已知四边形ABCD为直角梯形,AD∥BC,∠ABC=90°,PA⊥平面AC,且PA=AD=AB=1,BC=2.(1)求PC的长;(2)求异面直线PC与BD所成角的余弦值的大小