某校有教职员工150人,为了丰富教职工的课余生活,每天定时开放健身房和娱乐室.据调查统计,每次去健身房的人有10%下次去娱乐室,而在娱乐室的人有20%下次去健身房,请问,随着时间的推移,去健身房的人数能否趋于稳定?(假设这150人都会去参加活动)
(本小题满分12分) 已知一组数据的频率分布直方图如下.求(1)众数;(2)中位数;(3)平均数.
(本小题满分10分)选修4-5:不等式选讲 已知正实数满足:. (1)求的最小值; (2)设函数,对于(1)中求得的,是否存在实数,使得成立,说明理由.
(本小题满分10分)选修4—4:坐标系与参数方程 已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是(为参数). (1)求曲线的直角坐标方程与直线的普通方程; (2)设点,若直线与曲线交于,两点,且,求实数的值.[来
(本小题满分10分)选修4-1:几何证明选讲 如图,AB是⊙O的直径,G是AB延长线上的一点,GCD是⊙O的割线,过点G作AG的垂线,交直线AC于点E,交直线AD于点F,过点G作⊙O的切线,切点为H. (1)求证:C,D,E,F四点共圆; (2)若GH=6,GE=4,求EF的长.
(本小题满分12分) 己知函数 (1)若关于的不等式恒成立,求整数的最小值; (2)若,正实数满足,证明: