(本小题满分10分4—5不等式选讲)已知对于任意非零实数,不等式恒成立,求实数的取值范围。
(本小题满分13分)如图, 是边长为的正方形,平面,,,与平面所成角为. (Ⅰ)求证:平面; (Ⅱ)求二面角的余弦值; (Ⅲ)设点是线段上一个动点,试确定点的位置,使得平面,并证明你的结论.
(本小题满分13分)甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为.且他们是否破译出密码互不影响.若三人中只有甲破译出密码的概率为. (Ⅰ)求甲乙二人中至少有一人破译出密码的概率; (Ⅱ)求的值; (Ⅲ)设甲、乙、丙三人中破译出密码的人数为,求的分布列和数学期望.
(本小题满分13分)设中的内角,,所对的边长分别为,,,且,. (Ⅰ)当时,求角的度数; (Ⅱ)求面积的最大值.
(本小题满分13分)定义为有限项数列的波动强度. (Ⅰ)当时,求; (Ⅱ)若数列满足,求证:; (Ⅲ)设各项均不相等,且交换数列中任何相邻两项的位置,都会使数列的波动强度增加,求证:数列一定是递增数列或递减数列.
(本小题共13分)已知,或1,,对于,表示U和V中相对应的元素不同的个数. (Ⅰ)令,存在m个,使得,写出m的值; (Ⅱ)令,若,求证:; (Ⅲ)令,若,求所有之和.