如图,某客运公司规定旅客可随身携带一定重量的行李,如果超过规定,则需要购买行李票,行李票费用(元)与行李重量的关系用直线的方程表示,试求:(1)直线的方程.(2)旅客最多可免费携带多少行李?
已知椭圆方程,过B(-1,0)的直线l交随圆于C、D两点,交直线x=-4于E点,B、E分的比分λ1、λ2.求证:λ1+λ2=0
(本小题满分12分) 如图,在四棱台ABCD—A1B1C1D1中,下底ABCD是边长为2的正方形,上底A1B1C1D1是边长为1的正方形,侧棱DD1⊥平面ABCD,DD1=2. (1)求证:B1B//平面D1AC; (2)求二面角B1—AD1—C的余弦值.
(本小题满分12分) 设函数. (1)写出函数的最小正周期及单调递减区间; (2)当时,函数的最大值与最小值的和为,求的图象、轴的正半轴及x轴的正半轴三者围成图形的面积.
若直线与连接两点的线段有交点,求实数的取值范围.
已知在□ABCD中,点A(1,1),B(2,3),CD的中点为E(4,1),将□ABCD按向量a平移,使C点移到原点O. (1)求向量a; (2)求平移后的平行四边形的四个顶点的坐标.