如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.(I)求证:AB1⊥平面A1BD;(II)求二面角A-A1D-B的大小.
已知点P (4,4),圆C:与椭圆E:的一个公共点为A(3,1),F1,F2分别是椭圆的左、右焦点,直线与圆C相切。 (1)求m的值与椭圆E的方程; (2)设D为直线PF1与圆C 的切点,在椭圆E上是否存在点Q ,使△PDQ是以PD为底的等腰三角形?若存在,请指出共有几个这样的点?并说明理由。
、是常数,关于的一元二次方程有实数解记为 事件A. (1)若、分别表示投掷两枚均匀骰子出现的点数,求; (2)若、,且,求
如图,在直三棱柱中,,. (1) 下图给出了该直三棱柱三视图中的主视图,请据此画出它的左视图和俯视图; (2) 若是的中点,求四棱锥的体积.
已知:A、B、C是的内角,分别是其对边长,向量,,.(Ⅰ)求角A的大小;(Ⅱ)若求的长
已知定义在上的函数满足:,且对于任意实数,总有成立. (1)求的值,并证明函数为偶函数; (2)若数列满足,求证:数列为等比数列; (3)若对于任意非零实数,总有.设有理数满足,判断和的大小关系,并证明你的结论.