若满足,求的最大值和最小值.
已知函数(Ⅰ)求的值;(Ⅱ)若,求的值.
记函数的定义域为集合,函数的定义域为集合,集合.(Ⅰ)求集合,;(Ⅱ)若,求实数的取值范围.
计算:(Ⅰ)(Ⅱ)
设直线l1:y=k1x+1,l2:y=k2x-1,其中实数k1,k2满足k1k2+1=0.(Ⅰ)证明:直线l1与l2相交;(Ⅱ)试用解析几何的方法证明:直线l1与l2的交点到原点距离为定值.(Ⅲ)设原点到l1与l2的距离分别为d1和d2求d1+d2的最大值
如图:AD=2,AB=4的长方形所在平面与正所在平面互相垂直,分别为的中点.(1)求四棱锥-的体积;(2)求证:平面;(3)试问:在线段上是否存在一点,使得平面平面?若存在,试指出点的位置,并证明你的结论;若不存在,请说明理由.