(本小题满分14分)已知函数(aÎR). (Ⅰ)当a=2时,求函数在(1, f(1))处的切线方程; (Ⅱ)求函数的单调区间; (Ⅲ)若函数有两个极值点, (),不等式恒成立,求实数m的取值范围.
己知函数f(x)=+blnx+c(a>0)的图像在点(1,f(1))处的切线方程为x-y-2="0" (1)用a表示b,c;(2)若函数g(x)=x-f(x)在x∈(0,1]上的最大值为2,求实数a的取值范围.
已知数列{an}的前n项和为Sn,若Sn=2an+n,且bn=n(1- an)(1)求证:{an-1}为等比数列;(2)求数列{bn}的前n项和Tn.
设△ABC的三个内角A,B,C所对的边长分别为a,b,c.平面向量=(cosA,cosC),=(c,a),=(2b,0),且·(-)=0(1)求角A的大小;(2)当|x|≤A时,求函数f(x)=sinxcosx+sinxsin(x-)的值域.
设命题p:|2x-3|<1;命题q:lg2x - (2t+l)lgx+t(t+l)≤0,(1)若命题q所表示不等式的解集为A={x|l0≤x≤100},求实数t的值;(2)若p是q的必要不充分条件,求实数t的取值范围.
己知函数f(x)=ln(x+l)-x(1)求f(x)的单调区间;(2)若k∈Z,且f(x-l)+x>k(1一)对任意x>l恒成立,求k的最大值;(3)对于在(0,1)中的任意一个常数a,是否存在正数x0,使得成立?请说明理由.