(本题12分)如图,ABCD是平行四边形,(1)求证:(2)求证:
(选修4-4:坐标系与参数方程) (本小题满分10分)在直角坐标系xoy中,直线的参数方程为(t为参数),在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为.(Ⅰ)求圆C的直角坐标方程;(Ⅱ)设圆C与直线交于点A、B,若点P的坐标为,求|PA|+|PB|.
(选修4—2:矩阵与变换)(本小题满分10分)求矩阵的逆矩阵.
(16分)已知函数, (其中),,设. (Ⅰ)当时,试将表示成的函数,并探究函数是否有极值;(Ⅱ)当k=4时,若对任意的,存在,使,试求实数b的取值范围.。
(16分)已知工厂生产某种产品,次品率p与日产量x(万件)间的关系为,每生产1件合格产品盈利3元,每出现1件次品亏损1.5元. (I)将日盈利额y(万元)表示为日产量(万件)的函数;(Ⅱ)为使日盈利额最大,日产量应为多少万件?
(16分)已知函数().(I)若的定义域和值域均是,求实数的值;(II)若在区间上是减函数,且对任意的,,总有,求实数的取值范围.