、(本题12分)在正方体中,求证:(1)对角线⊥平面。(2)与平面的交点H是的外心。
已知函数.(1)若在区间单调递增,求的最小值;(2)若,对,使成立,求的范围.
如图四棱锥中,底面是平行四边形,平面,垂足为,在上且,,,是的中点,四面体的体积为.(1)求二面角的正切值;(2)求直线到平面所成角的正弦值;(3)在棱上是否存在一点,使异面直线与所成的角为,若存在,确定点的位置,若不存在,说明理由.
成都七中为绿化环境,移栽了银杏树2棵,梧桐树3棵。它们移栽后的成活率分别为且每棵树是否存活互不影响,求移栽的5棵树中:(1)银杏树都成活且梧桐树成活2棵的概率;(2)成活的棵树的分布列与期望.
已知为坐标原点,,.(Ⅰ)若的定义域为,求的单调递增区间;(Ⅱ)若的定义域为,值域为,求的值.
设,两个函数,的图像关于直线对称.(1)求实数满足的关系式;(2)当取何值时,函数有且只有一个零点;(3)当时,在上解不等式.