已知抛物线与直线(1) 求证:抛物线与直线相交;(2) 求当抛物线的顶点在直线的下方时,的取值范围;(3) 当在的取值范围内时,求抛物线截直线所得弦长的最小值。
设正项数列{an}的前n项和为Sn,若{an}和{}都是等差数列,且公差相等. (1)求{an}的通项公式; (2)若a1,a2,a5恰为等比数列{bn}的前三项,记数列cn=,数列{cn}的前n项和为Tn.求证:对任意n∈N*,都有Tn<2.
已知向量p=(an,2n),向量q=(2n+1,-an+1),n∈N*,向量p与q垂直,且a1=1. (1)求数列{an}的通项公式; (2)若数列{bn}满足bn=log2an+1,求数列{an·bn}的前n项和Sn.
如图,在等腰直角△OPQ中,∠POQ=90°,OP=2,点M在线段PQ上. (1)若OM=,求PM的长; (2)若点N在线段MQ上,且∠MON=30°,问:当∠POM取何值时,△OMN的面积最小?并求出面积的最小值.
在△ABC中,角A,B,C的对边分别为a,b,c,若acos2+ccos2=b. (1)求证:a,b,c成等差数列; (2)若∠B=60°,b=4,求△ABC的面积.
已知函数f(x)=2sin xcos x+cos 2x(x∈R). (1)当x取什么值时,函数f(x)取得最大值,并求其最大值; (2)若θ为锐角,且f=,求tan θ的值.