设P(a,b)(b≠0)是平面直角坐标系xOy中的点,l是经过原点与点(1,b)的直线,记Q是直线l与抛物线x2=2py(p≠0)的异于原点的交点⑴.已知a=1,b=2,p=2,求点Q的坐标。⑵.已知点P(a,b)(ab≠0)在椭圆+y2=1上,p=,求证:点Q落在双曲线4x2-4y2=1上。⑶.已知动点P(a,b)满足ab≠0,p=,若点Q始终落在一条关于x轴对称的抛物线上,试问动点P的轨迹落在哪种二次曲线上,并说明理由。
已知向量(为常数且),函数在上的最大值为.(1)求实数的值;(2)把函数的图象向右平移个单位,可得函数的图象,求函数的解析式及其单调增区间.
设函数.(Ⅰ)若,解不等式;(Ⅱ)如果,求a的取值范围.
直角坐标系中,直线的参数方程为,(是参数),在以为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为. (Ⅰ)求直线的普通方程及曲线的直角坐标方程;(Ⅱ)若与分别是直线与曲线上的动点,求的最小值.
如图,已知是⊙O的切线,为切点,是⊙O的割线,与⊙O交于两点,圆心在的内部,点是的中点.(Ⅰ)证明四点共圆;(Ⅱ)求的大小.
已知函数.(Ⅰ)求函数的单调区间;(Ⅱ)设,若对任意,,不等式恒成立,求实数的取值范围