(本小题满分7分)选修4-2:矩阵与变换设是把坐标平面上的点的横坐标伸长到倍,纵坐标伸长到倍的伸压变换.(Ⅰ)求矩阵的特征值及相应的特征向量;(Ⅱ)求逆矩阵以及椭圆在的作用下的新曲线的方程.
(本小题满分10分)选修4—4:坐标系与参数方程 已知曲线:(为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为. (Ⅰ)将曲线的参数方程化为普通方程,将曲线的极坐标方程化为直角坐标方程; (Ⅱ)设为曲线上的点,点的极坐标为,求中点到曲线上的点的距离的最小值.
(本小题满分10分)选修4—1:几何证明选讲 如图,已知与圆相切于点,半径,交于点, (Ⅰ)求证:; (Ⅱ)若圆的半径为3,,求的长度.
(本小题满分12分) 已知函数. (1)当时,求在最小值; (2)若存在单调递减区间,求的取值范围; (3)求证:().
(本小题满分12分)已知椭圆:的焦距为,离心率为,其右焦点为,过点作直线交椭圆于另一点. (1)若,求外接圆的方程; (2)若过点的直线与椭圆相交于两点、,设为上一点,且满足(为坐标原点),当时,求实数的取值范围.
如图,在三棱锥中,侧面与侧面均为等边三角形,,为中点. (Ⅰ)证明:平面; (Ⅱ)求二面角的余弦值.