定义在R上的单调函数满足,且对于任意的,都有.(1)求证:为奇函数;(2)若对任意的恒成立,求实数的取值范围.
(本小题满分12分)设递增等比数列{}的前n项和为,且=3,=13,数列{}满足=,点P(,)在直线x-y+2=0上,n∈N﹡(Ⅰ)求数列{},{}的通项公式(Ⅱ)设=,数列{}的前n项和,若>2a-1恒成立(n∈N﹡),求实数a的取值范围.
(本小题满分12分)已知半圆x2+y2=3(y≥0),P为半圆上任一点,A(2,0)为定点,以PA为边作正三角形PAB,且点B与圆心分别在PA的两侧,求四边形POAB面积的最大值.
(本小题满分12分)解不等式x2-x+a-a2<0.
(本小题满分12分)△ABC中,内角A、B、C的对边分别为a、b、c(I)若△ABC面积=,c=2,A=60°,求a,b的值(Ⅱ)若a=c·cosB,且b=c·sinA,试判断△ABC的形状
(本小题满分12分)某公司计划2008年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为元/分钟和200元/分钟,规定甲、乙两个电视台为该公司所做的每分钟广告,能给公司事来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?