已知的极坐标方程为.点的极坐标是.(Ⅰ)把的极坐标方程化为直角坐标参数方程,把点的极坐标化为直角坐标.(Ⅱ)点M()在上运动,点是线段的中点,求点运动轨迹的直角坐标方程.
设定义在R上的函数f(x)对于任意x,y都有f(x+y)=f(x)+f(y)成立,且f(1)=﹣2,当x>0时,f(x)<0. (1)判断f(x)在R上的单调性,并加以证明; (2)当﹣2015≤x≤2015时,不等式f(x)≤k恒成立,求实数k的取值范围.
一个盒子装有六张卡片,上面分别写着如下六个定义域为R的函数:,,,,,. (1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率; (2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数ξ的分布列和数学期望.
已知命题p:关于x的方程x2+ax+a=0有实数解;命题q:﹣1<a≤2. (1)若¬p是真命题,求实数a的取值范围; (2)若(¬p)∧q是真命题,求实数a的取值范围.
甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与p,且乙投球2次均未命中的概率为. (Ⅰ)求乙投球的命中率p; (Ⅱ)求甲投球2次,至少命中1次的概率; (Ⅲ)若甲、乙两人各投球2次,求两人共命中2次的概率.
已知函数,,. (1)当时,求函数的单调区间; (2)若函数在区间上的最小值是,求的值; (3)设是函数图象上任意不同的两点,线段的中点为,直线的斜率为,证明:.