(本小题满分14分)某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900m2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1m,三块矩形区域的前、后与内墙各保留 1m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留 3m 宽的通道,如图.设矩形温室的室内长为(m),三块种植植物的矩形区域的总面积为(m2).(1)求关于的函数关系式;(2)求的最大值.
(本小题满分12分)已知点在椭圆C: 上,且椭圆C的离心率.(Ⅰ)求椭圆C的方程;(Ⅱ)过点作直线交椭圆C于点A.B.△ABQ的垂心为T,是否存在实数m ,使得垂心T在y轴上.若存在,求出实数m的取值范围;若不存在,请说明理由.
(本小题共12分)已知函数的图象过点,且在内单调递减,在上单调递增。(1)求的解析式;(2)若对于任意的,不等式恒成立,试问这样的是否存在.若存在,请求出的范围,若不存在,说明理由;
(本小题满分12分)从甲、乙两名运动员的若干次训练成绩中随机抽取6次,分别为甲:7.7,7.8,8.1,8.6,9.3,9.5.乙:7.6,8.0,8.2,8.5,9.2,9.5(1)根据以上的茎叶图,对甲、乙运动员的成绩作比较,写出两个统计结论;(2)从甲、乙运动员六次成绩中各随机抽取1次成绩,求甲、乙运动员的成绩至少有一个高于8.5分的概率。(3)经过对甲、乙运动员若干次成绩进行统计,发现甲运动员成绩均匀分布在[7.5,9.5]之间,乙运动员成绩均匀分布在[7.0,10]之间,现甲、乙比赛一次,求甲、乙成绩之差的绝对值小于0.5分的概率。
(本小题共12分)在如图的多面体中,⊥平面,,,,,,, 是的中点.(Ⅰ)求证:平面;(Ⅱ)求证:;
在中,角所对的边分别为a,b, c.已知且.(Ⅰ)当时,求的值;(Ⅱ)若角为锐角,求p的取值范围