(本小题满分16分)已知为实数,函数,函数.(1)当时,令,求函数的极值;(2)当时,令,是否存在实数,使得对于函数定义域中的任意实数,均存在实数,有成立,若存在,求出实数的取值集合;若不存在,请说明理由.
在数列中,,且前n项的算术平均数等于第n项的倍().(1)写出此数列的前5项;(2)归纳猜想的通项公式,并用数学归纳法证明.
将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落,小球在下落过程中,将3次遇到黑色障碍物,最后落入A袋或B袋中。已知小球每次遇到黑色障碍物时向左、右两边下落的概率都是.(1)求小球落入A袋中的概率P(A);(2)在容器入口处依次放入4个小球,记X为落入A袋中小球的个数,试求X=3的概率和X的数学期望EX.
已知是二次函数,方程有两个相等的实数根,且。(1)求的表达式;(2)若直线把的图象与两坐标轴围成的图形面积二等分,求t的值.
已知展开式的二项式系数和为512,且.求的值; (2)求的值.
一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月产量如表(单位:辆):
按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆。(1)求z的值;(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本。将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率.