(本小题满分16分)在平面直角坐标系中,已知椭圆:的离心率,直线过椭圆的右焦点,且交椭圆于,两点.(1)求椭圆的标准方程; (2)已知点,连结,过点作垂直于轴的直线,设直线与直线交于点,试探索当变化时,是否存在一条定直线,使得点恒在直线上?若存在,请求出直线的方程;若不存在,请说明理由.
如图,在三棱柱中, ,,,点是的中点,.(Ⅰ)求证:∥平面;(Ⅱ)设点在线段上,,且使直线和平面所成的角的正弦值为,求的值.
在数列中,已知(.(Ⅰ)求及;(Ⅱ)求数列的前项和.
在中,角,,的对边是,,,且.(Ⅰ)求的值;(Ⅱ)若,求面积的最大值.
已知函数.(1)求证:;(2)解不等式
平面直角坐标系中,直线的参数方程是(为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,已知曲线的极坐标方程为.(1)求直线的极坐标方程;(2)若直线与曲线相交于、两点,求.